Third-generation femtosecond technology

HANIEH FATTahi¹,², HELENA G. BARROS², MARTIN GORJAN¹,², THOMAS NUBBEMEYER², BIDOOR ALSAIF³,¹,*, CATHERINE Y. TEISSET⁴, MARCEL SCHULTZE⁴, STEPHAN PRINZ⁴, MATTHIAS HAEFNER⁴, MORITZ UEFFING², AYMAN ALISMAIL³,², LÉNÁRD VÁMOS²,⁵, ALEXANDER SCHWARZ¹,², OLEG PRONIN², JONATHAN BRONS², XIAO TAO GENG⁶,¹, GUNNAR ARISHOLM⁷, MARCELO CIAPPINA¹, VLADISLAV S. YAKOLEV¹,²,†, DONG-EON KIM⁶, ABDALLAH M. AZZEER³, NICHOLAS KARPWICZ¹, DIRK SUTTER⁸, ZSUZSANNA MAJOR¹,², THOMAS METZGER⁴, FERENC KRAUSZ¹,²,†

¹Max-Planck Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
²Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748 Garching, Germany
³Physics and Astronomy Department, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
⁴TRUMPF Scientific Lasers GmbH + Co. KG, Feringastr. 10, 85774 München-Unterföhring, Germany
⁵Wigner Research Center for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
⁶Physics Department, POSTECH, San 31 Hyoja-Dong, Namku, Pohang, Kyungbuk 790-784, Republic of Korea
⁷FFI (Norwegian Defence Research Establishment), Postboks 25, NO-2027 Kjeller, Norway
⁸TRUMPF Laser GmbH + Co. KG, Aichhalder Str. 39, 78713 Schramberg, Germany
* Current address: Electrical Engineering, Computer, Electrical and Mathematical Sciences and Engineering Division, Building 1, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
† Current address: Center for Nano-Optics (CeNO), Georgia State University, Atlanta, Georgia 30303, USA
* Corresponding author: krausz@lmu.de

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX

Femtosecond pulse generation was pioneered four decades ago using modelocked dye lasers, which dominated the field for the following twenty years. Dye lasers were then replaced with titanium-doped sapphire (Ti:Sa) lasers, which have had their own two-decade reign. Broadband optical parametric amplifiers (OPA) appeared on the horizon more than 20 years ago but have been lacking powerful, cost-effective picosecond pump sources for a long time. Diode-pumped ytterbium-doped solid-state lasers are about to change this state of matters profoundly. They are able to deliver 1-picosecond-scale pulses at kW-scale average-power levels, which, in thin-disk lasers, may come in combination with terawatt-scale peak powers. Broadband OPAs pumped by these sources hold promise for surpassing the performance of current femtosecond systems so dramatically as to justify referring to them as the next generation. Third-generation femtosecond technology (3FST) offers the potential for femtosecond light tunable over several octaves, multi-terawatt few-cycle pulses and synthesized multi-octave light transients. Unique tunability, temporal confinement and waveform variety in combination with unprecedented average powers will extend nonlinear optics and laser spectroscopy to previously inaccessible wavelength domains, ranging from the far infrared to the x-ray regime. Here we review the underlying concepts, technologies, and proof-of-principle experiments. A conceptual design study of a prototypical tunable and wideband source demonstrates the potential of 3FST for pushing the frontiers of femtosecond and attosecond science. © 2014 Optical Society of America

This paper is dedicated to Gerard Mourou on the occasion of his 70th birthday. His invention, chirped-pulse amplification, laid the groundwork for both second-generation and third-generation femtosecond technology, and thereby for all fields of science relying on intense laser light. Thank you, Gerard!

http://dx.doi.org/10.1364/optica.99.099999

1. Introduction

Femtosecond technology was born in the 1970’s, when passively modelocked dye lasers produced the first pulses shorter than 1 picosecond [1-3]. Subsequent advances led to pulse durations of a few tens of femtoseconds directly from laser oscillators [4-7]. The poor energy-storage capability of laser dyes limited amplification to microjoule energies and megawatt peak powers [8, 9]. This first-generation femtosecond technology (1FST) opened the door for direct time-domain investigations of hitherto immeasurably fast processes such as molecular dynamics, chemical reactions, or phase transitions in condensed matter [10, 11].

Broadband solid-state lasers with large energy-storage capabilities appeared by the end of the 1980’s [12-14]. They offered the potential for further pulse shortening as well as boosting the pulse energy and peak power by many orders of magnitude. Second-generation femtosecond technology (2FST), based on chirped-pulse amplification (CPA) [15] in solid-state lasers, in particular, in Ti:sapphire-based systems [16-18], and dispersion control by chirped multilayer mirrors (henceforth briefly: chirped mirrors) [19-21] paved the way for the emergence of entirely new research fields and technologies such as attosecond science [22] and laser-driven particle acceleration [23].

2FST is now capable of providing pulses with ultrahigh (petawatt) peak power at moderate average power [24] and moderate-peak-power (gigawatt) pulses at ultrahigh (approaching the kW-scale) average power levels [25], see Fig. 1. Based on optical parametric chirped-pulse amplification (OPCPA) [26] driven by terawatt-scale pulses from ytterbium lasers at kW-scale average power, third-generation femtosecond technology (3FST) will, as a defining characteristic, combine high (terawatt-scale) peak powers with high (kW-scale) average powers in ultrashort optical pulse generation for the first time. This unprecedented parameter combination will allow exploring extreme nonlinearities of matter and extending ultrashort pulse generation to short (nanometer to sub-nanometer) as well as long (multi-micrometer) wavelengths at unprecedented flux levels holding promise for yet another revolution in ultrafast science. Fig. 1 shows a summary of performances of 1FST, 2FST and 3FST systems.

OPCPA requires intense optical pulses for pumping the nonlinear medium used for the parametric conversion. The optimum duration of these pulses is of the order of 1 picosecond, constituting a trade-off between a high resistance to optical damage (decreasing for longer pulses [27-29]) and a small temporal walk-off [30, 31] between pump and signal pulses relative to their duration (increasing for shorter pulses). OPCPA pumped by 1-ps-scale pulses offers octave-spanning light amplification with unprecedented efficiency, not accessible by any other technique known to date. Moreover, for very similar physical reasons, these pulse durations appear to be ideal for efficient frequency conversion of the pump light via low-order harmonic generation and/or frequency mixing [32, 33]. Hence, a reliable, cost-effective, and power-scalable source of high-energy 1-ps-scale laser pulses would constitute the ideal basis for exploiting the full potential of OPCPA for ultrashort pulse amplification at a variety of wavelengths.

In this work we show that diode-pumped Yb-doped thin-disk lasers based on a technology well established in industrial environments fulfill all these requirements and offer a promising route to implementing 3FST in a conceptual architecture outlined in Fig. 2. In addition to reaching simultaneously peak and average power levels that will outperform 1FST and 2FST by several orders of magnitude (Fig. 1), 3FST systems allow a variety of operational modes, offering multi-cycle pulses tunable over several octaves, few-cycle pulses at different carrier wavelength, and multi-octave synthesis of light waveforms.

Our discussion in this paper focuses on powerful ultrashort-pulse generation at high (≥ 1 kHz) repetition rates; ultrahigh-intensity lasers emitting a few pulses per second or less as well as sources delivering moderate-power pulses at high average power are out of the scope of this work (for a review, the interested reader is kindly referred to relevant reviews [23] and [34], respectively). A brief historical overview of 1FST [1-9, 35-45] and 2FST [12-15, 17-21, 45-74], is presented in the Supplementary Material. The remaining part of the introduction addresses some of the major milestones of OPCPA history.

The Conceptual Basis for 3FST. Optical parametric amplification (OPA) was discovered in the 1960’s [75, 76], but only nonlinear crystals with a high second-order nonlinear susceptibility and high resistance to optical damage, such as β-barium borate (BBO) [77] along with the invention of OPCPA by Piskarskas and coworkers [26] opened the prospect for efficient amplification of femtosecond laser pulses via this mechanism. A prerequisite for OPA being able to provide a competitive alternative to femtosecond laser amplifiers is the availability of power-scalable pump sources with a good wall-plug efficiency. So far, only lasers with pulse durations much longer than one picosecond have been able to meet this requirement. The instantaneous nature of the OPA pump-to-signal energy conversion calls for a signal pulse temporally stretched to match the duration of the pump pulse for efficient OPA and recompressed after amplification.

The bandwidth of OPCPA can be enhanced by a noncollinear pump-signal beam propagation geometry, utilizing the slightly different propagation directions of the interacting beams to compensate the effect of material dispersion in the nonlinear medium [78, 79]. Drawing on these basic concepts and a variety of pump and seed sources, a large number of OPA experiments aiming at efficient amplification of ultrashort pulses have been performed over the past 20 years. Their review is beyond the scope of this paper, we refer the interested reader to a number of excellent review articles on this subject [80-84].

OPCPA has been demonstrated to be capable of amplifying pulses as short as 4 fs [85], achieving peak-power levels of 16 TW from a table-top system [86], approaching the petawatt frontier when pumped by large-scale lasers [87-93], and reaching average-power levels as high as 22 W at a 1 MHz repetition rate [94]. However, none of these systems have been capable of achieving high peak and average powers simultaneously. The most powerful OPCPA system of this kind reported to date delivers 0.49-TW pulses at an average power of 2.7 W [95], which is still inferior to state-of-the-art Ti:Sa systems. The pump laser technology described in Sec. 2 holds promise for changing this state of affairs dramatically.

In what follows, Sec. 2 reviews near-1-ps-pulse amplification and its implementation with thin-disk lasers, scalable to high peak as well as average powers. Sec. 3 is devoted to conceptual design studies demonstrating the potential of 3FST for creating a source of femtosecond light with unprecedented characteristics and Sec. 4 addresses some of their expected implications.
2. Near-1-ps Ytterbium Lasers

Near-1-ps laser pulses with high peak power have long been available from flashlamp-pumped passively-mode-locked neodymium-doped glass lasers, however only at a very low repetition rate and hence low average power level [96-98]. High average powers ranging from tens to hundreds of Watts became recently available from diode-pumped fiber, slab and cryogenically-cooled thick-disk lasers [99-110]. Because of excessive accumulation of nonlinearly-induced phase shifts in their long gain media, their scaling to much higher energies requires large-aperture (meter-scale) and hence extremely expensive diffraction gratings for implementing CPA [103, 107, 111] or complex architectures, such as the coherent combination of a large number of parallel beams [112], or, possibly by coherent pulse stacking [113]. By contrast, diode-pumped ytterbium-doped thin-disk lasers offer energy and peak-power scalability from simple, cost-effective assemblies. Therefore, in what follows we focus on this technology as a promising candidate for driving broadband CPA systems scalable to high average and peak powers. Nevertheless, we stress that diode-pumped fiber, cryogenically-cooled thick-disk, and slab lasers constitute a highly competitive alternative at high repetition rates and moderate peak power levels and kindly refer the reader to recent reviews of these approaches [33, 108, 114-117]. Table 1 summarizes the parameters of some of the best-performing systems based on Yb-doped fiber, slab, cryogenically-cooled thick-disk, and thin-disk technology.

2.A. Towards High Peak and Average Powers

Ever since its first demonstration in 1994 [118], the thin-disk laser has been one of the most promising concepts for scaling sub-picosecond pulses to highest peak and average powers. In this section we briefly summarize the basic features of thin-disk technology and refer the reader to the Supplementary Material and recent reviews [119-121] for a more detailed discussion of performance, limitations, and ways of overcoming them.

In a thin-disk laser the active medium is a thin and relatively large diameter disk, typically tens to hundreds of μm in thickness and few (tens) of mm in diameter. Crystals are used due to their favorable thermal and mechanical properties compared to glasses, with Ytterbium-doped Yttrium-Aluminium-Garnet (Yb:YAG) being the paradigm material of choice to date, although thin-disk lasers using different disk materials such as Yb:Lu2O3 [122, 123], Yb:CALGO [124] or ceramic Yb:YAG disks [125, 126] have also been demonstrated.

An Yb:YAG laser disk is coated on the back side to act as a high-reflective mirror both for the pump as well as the laser wavelengths. The other (front) side is anti-reflect coated for both wavelengths (see Fig. 3(a)). The HR-coated side of the disk is firmly fixed onto a supporting substrate which, in turn, is mounted on a water-cooled assembly. To achieve good (90% or more) absorption of the pump light, the pump beam is delivered at an angle from the front side and reflected in a number of passes using a special imaging multipass assembly (Fig. 3(b)). Heat removal from the crystal is realized along the optical axis of the resonator. This minimizes thermally-induced changes in the optical properties of the laser medium across the laser beam and allows for extremely high pump power densities reaching and exceeding 10 kW/cm² [119, 127, 128]. Energy and power scaling can be accomplished by scaling the diameter of the disk along with the pump and laser beams, eventually limited by amplified spontaneous emission (ASE) [129, 130].

The small length of the gain medium greatly suppresses nonlinear focusing during the amplification of ultrashort pulses as compared to other laser geometries. As a result, CPA can be implemented with substantially smaller temporal stretching, requiring smaller, less expensive diffraction gratings as compared to other solid-state ultrashort pulse amplifiers [100, 108]. These superior features of the thin-disk laser geometry come at the expense of a low single-pass gain of typically 10-15 % (small signal). This shortcoming can be mitigated by multiple passage and/or the serial combination of several disks [119, 131, 132].

Thin-disk gain modules have been used for ultrashort-pulse generation in modelocked oscillators [133, 134], regenerative [135] and multipass [136] amplifiers. Thousands of them have been tried and tested in 24/7 service for industry. This mature technology constitutes an ideal basis for scaling sub-picosecond pulses to unprecedented combinations of peak and average power levels for driving OPAs in 3FST [137]. The remaining part of this section reveals how this technology can provide both the broadband seed and the high power pump pulses in a perfectly synchronized fashion to this end.

2.B. Modelocked Ytterbium-Doped Thin-Disk Oscillators

Ultrashort-pulse generation from a diode-pumped Yb-doped thin-disk laser oscillator was first demonstrated by Keller et al. at the turn of the millennium [138]. The technology was subsequently advanced to average-power levels of hundreds of watts [139] pulse energies of several microjoules [131, 140, 141] and pulse durations shorter than 100 fs [132, 142] directly from the oscillator. Kerr-lens modelocking (KLM) [50] and semiconductor saturable absorber mirrors (SESAM) [143] have been the methods of choice for modelocking [138, 144].

Fig. 4 summarizes the performance of a KLM Yb:YAG thin-disk-oscillator-based few-cycle source [145]. Pulses from the oscillator centered at 1030 nm with an energy of 1.1 μJ and a duration of 250 fs at a repetition rate of 38 MHz are passed through a two-stage compressor made up of a solid-core large-mode-area fiber and a bulk quartz crystal as the nonlinear medium and chirped mirrors forming the dispersive delay lines, resulting in 10-fs (three-optical-cycle), 0.26-μJ pulses with an average power of 10 W. The system delivers reproducible waveform-controlled pulses at an average power exceeding that of few-cycle Ti:Sa oscillators by more than an order of magnitude.

The average power of KLM Yb:YAG thin-disk oscillators was recently increased by nearly an order of magnitude to deliver 14-μJ, 330-fs pulses at 19 MHz repetition rate [141]. These advances open the prospect of a MHz-source of near-infrared (NIR) femtosecond continua with a peak power of several hundred MW at average-power levels of the order of 100 W and, if needed, with a controlled waveform. Such a source holds promise to greatly expand the range of applications of ultrashort-pulsed laser oscillators (as a stand-alone system) and to serve as a front-end for gigawatt-to-terawatt 3FST architectures (see Fig. 2 and discussion in Sec. 3).

2.C. Thin-Disk Regenerative Amplifiers for Pumping OPCPA

The first thin-disk-based regenerative amplifier was demonstrated in 1997 and generated 2.3-ps pulses with energies up to 0.18 mJ and an average power of the order of 1 W [146]. A decade of development work advanced the technology into the multi-millijoule, multi-10W regime [147]. By drawing on commercial Yb:YAG thin-disk modules originally designed for multi-kW-class kW products, continued efforts led to near-1-ps pulses with energies as high as 40 mJ and average powers reaching 300 W at repetition rates of 3 and 10 kHz, respectively [148]. Milestones of
this evolution are listed in Table 1 and a schematic of the architecture of state-of-the-art systems is shown in Fig. 5(a). All results on picosecond CPA with thin-disk lasers referred to or reported directly in this work have so far been achieved with standard Yb:YAG thin-disk laser modules designed and fabricated for industrial lasers. This suggests that there may be some room left for further optimization of thin-disk Yb:YAG chirped-pulse amplifiers.

Thanks to their superior thermal management and low B-integral, Yb:YAG thin-disk regenerative amplifiers deliver their near-bandwidth-limited pulses in a near-diffraction-limited beam (M² < 1.1) with excellent pulse-energy stability characterized by a drift smaller than 1% over 12 hours. Fig. 5(b) presents the measured optical spectrum and the retrieved temporal profile showing a full width at half maximum (FWHM) pulse duration of 0.97 ps of an Yb:YAG thin-disk regenerative amplifier composed of two thin-disk amplifying modules within one resonator, delivering 50 mJ pulses at a repetition rate of 5 kHz.

While 40 mJ at 250 W and 30 mJ at 300 W [148] represent current records in high-energy 1-ps-scale pulse generation with high average power, none of these values individually appear to come even close to ultimate limits of picosecond thin-disk laser technology. In fact, a regenerative amplifier followed by a multipass amplifier recently boosted the energy of sub-2-ps pulses to more than 500 mJ at a repetition rate of 100 Hz [149]. At a much higher repetition rate (800 kHz), 7-ps pulses from a commercial thin-disk laser were amplified to an average power of 1.1 kW [136]. An amplifier chain containing two thin-disk-based multipass amplifiers as final stages delivers 14 kW, 140 mJ in a 10 Hz burst mode [150].

Thanks to their optimum pulse duration of the order of 1 ps and excellent beam quality, thin-disk Yb:YAG regenerative amplifiers allow for efficient generation of second-harmonic and third-harmonic light by χ⁽2⁾ processes (second-harmonic generation, SHG, and sum-frequency generation, SFG, respectively). As an example, results achieved with 1.3- ps, 1030-nm pulses from a multi-kHz Yb:YAG thin-disk laser, demonstrate a second-harmonic conversion efficiency as high as 74% in a 1.5-mm thick LiB₃O₃ (LBO) crystal (θ₁ = 90°, θ₂ = 12.9°).

OPA relies on a spatial as well as temporal overlap of the pump and seed pulses for efficient amplification. Hence, pump and seed pulses are derived from the same femtosecond laser [137, 151] serving as the common frontend. However, the pump pulse suffers a delay of several microseconds upon passage through the regenerative and/or multipass amplifier(s). This delay is compensated for by selecting a correspondingly delayed seed pulse from the train delivered by the common frontend. Already fractional changes as small as 10⁻² - 10⁻⁸ (by air turbulences, mechanical vibrations and expansion due to temperature drifts) in the microsecond delay of the pump and seed pulses suffered upon passage through different optical systems may cause an excessive timing jitter [152] and require active stabilization.

Spectrally-resolved cross-correlation of the seed and the pump pulse offers a powerful means of active synchronization [153]. A possible implementation of this concept is based on stretching a small fraction of the broadband seed pulse to a duration of several picoseconds and mixing this pulse with the narrow-band pump pulse in a nonlinear crystal. Changes in the carrier wavelength of the resultant sum-frequency output are unambiguously related to the relative timing between pump and seed pulses. In its first demonstration, this stretched-pulse cross-correlation technique was capable of reducing the RMS timing jitter to σ = 24 fs over the frequency band of 20 MHz to 1.5 kHz [154].

Recently, this method was improved by replacing the sum-frequency generator by an OPA stage and deriving the timing information (optical error signal) from the spectrally-resolved amplified signal output [155]. For this approach it is sufficient to split off only ~ 2 pl of the seed-pulse energy, since with the amplification of the seed pulse the OPA inherently delivers an amplified error signal. The concept is schematically depicted in Fig. 6(a). Its first implementation yielded pump-seed timing stabilization with a record residual RMS jitter of less than 2 fs over the frequency band ranging from 0.1 Hz to 1 kHz as well as long-term timing stability (Fig. 6 (b)), ensuring ideal conditions for stable OPCPA operation.

2.D. Scaling Thin-Disk Amplifiers – Future Prospects

Present-day industrial thin-disk laser technology is capable of transforming diode-laser light of poor beam quality into kilowatts of power delivered in a diffraction-limited laser beam. The overarching question is to what extent this tremendous potential can be exploited for simultaneously boosting the energy and average power of near-1-ps laser pulses. Scaling of power and energy have already been demonstrated separately beyond 1 kW [136] and up to 11 kW [156-158], respectively. To achieve these values of both energy and average power in the same thin-disk laser system will require optimal scaling of the disk diameter (increasing the available energy but also the depopulation losses) and disk thickness (increasing the available energy and the deleterious thermal effects) [119].

A regenerative amplifier equipped with commercial Yb:YAG thin-disk modules is being developed in our laboratory for generating 200-mJ pulses at a 4-kHz repetition rate. In preliminary experiments with a linear-cavity amplifier, 95 mJ and 130 mJ pulses at a repetition rate of 1 kHz have been demonstrated, with one and two disk modules, respectively (Fig. 8) with the latter being limited by thermal effects in the Faraday isolator preventing feedback into the front end [159]. The use of a ring cavity will remove this limitation and – based on these preliminary results – holds promise for achieving the above target parameters. A rate-equation model of thin-disk laser energy that takes into account the decrease in the upper level lifetime, caused by ASE [121] and the disk temperature, shows good agreement with the measurements and indicates that the same energy can be extracted up to 5 kHz with the current disks. An optimized design with increased disk thickness, pumped at 969 nm can further increase the extracted energy, using the same beam size of 5 mm.

Much higher energies and powers can be expected from larger apertures [160]. The feasibility of scaling near-1-ps thin-disk amplifiers to the 1-kW frontier was recently demonstrated [156-158]. Further discussion on how careful engineering of large-aperture Yb:YAG disk amplifier modules for minimizing ASE and temperature control could permit scaling the amplified energy to the Joule-kilowatt-level is given in the Supplementary Material. Such large-aperture Yb:YAG disks have been shown to be capable of handling more than ten kW of diode-laser power [161]. Merely a couple of thin-disk amplifier modules equipped with 20-mm-diameter Yb:YAG disks and pumped by approximately 30 kW of cw diode-laser light each will be sufficient to boost the energy of the 0.2-J seed pulses – delivered by two 5-kHz regenerative amplifiers in a parallel architecture – to the level of 2 J at a 10 kHz repetition rate. A possible approach to this goal is schematically illustrated in Fig. 7. Should scaling to this energy level encounter unexpected difficulties, coherent combination of several amplifiers [25, 162-164], or the concept of pulse stacking [113] might provide a remedy. These developments may open the door for a kW-class
3FST-source of few-cycle or tunable multi-TW femtosecond pulses.

3. Broadband OPCPA Pumped by near-1-Picosecond-Pulses

With robust nonlinear crystals and a reliable, cost-effective, and power-scalable short-pulsed pump-laser technology along with methods for accurate pump-seed timing synchronization in place (see Sec. 2.C), near-1-ps-pulse-pumped OPCPA offers several advantages over both long-pulse-driven OPCPA and conventional CPA implemented in solid-state laser amplifiers. First, the amplifier crystals can be pumped at much higher intensities [27-29], allowing high gains to be realized with very thin crystals, i.e. in combination with broad amplification bandwidths. Second, the short pump window also greatly simplifies the implementation of CPA and dispersion control and, finally and most importantly, improves the temporal contrast of the amplified signal dramatically on the nanosecond to few-picosecond time scale.

The gain bandwidth can be even further extended, up to several octaves, by using different crystals or crystals with different orientations yielding shifted gain bands and utilizing multiple pump beams [165] at all wavelengths where they can be made available with good wall-plug efficiency, i.e. at 1030 nm and its low-order harmonics at 515 nm and 343 nm. This constitutes the basis for developing the prototypical broadband or broadly-tunable sources of 3FST. The very same front end and multi-colour pump source may be utilized for both purposes. In what follows, we shall discuss the feasibility of these 3FST sources and their expected performance when being pumped with several-kHz, kW-class thin-disk lasers recently demonstrated [148] and systems that are currently under development [159].

3.A. Basic theory

In the OPA process, energy is transferred from a high-frequency, high-intensity (pump) beam to a low-frequency, low-intensity (seed or signal) beam in a birefringent [166] nonlinear crystal, while a third beam, the idler, is generated. By polarizing the pump along the fast axis and the signal or idler or both along the slow axis, conservation of energy and momentum of the participating (pump, signal, idler; labeled with p, s, and i, respectively) photons can be simultaneously fulfilled:

$$\hbar \omega_p - \hbar \omega_s - \hbar \omega_i = 0$$ \hspace{1cm} (1)

$$\mathbf{k}_p - \mathbf{k}_s - \mathbf{k}_i = 0.$$ \hspace{1cm} (2)

In the classical description of the process, Eqs. (1) and (2) account for the parametric frequency downconversion and phase (velocity) matching of the participating waves, respectively. Owing to dispersion, these conditions can be fulfilled over a limited range of signal frequencies only, which manifests itself in a finite parametric gain bandwidth $\Delta \nu$ [167, 168]:

$$\Delta \nu = \frac{2(\ln 2)^{\frac{v_2}{v}}}{\pi} \left(\frac{\Gamma}{L} \right)^{\frac{1}{2}} \frac{1}{\nu_{gi}} - \frac{1}{\nu_{gs}},$$ \hspace{1cm} (3)

where L is the length of the nonlinear medium, Γ is the parametric gain coefficient proportional to the pump-field amplitude and the effective nonlinear optical coefficient, and $v_{gi,s}$ stand for the group velocity of the idler and the signal, respectively [167]. Eq. (3) suggests that temporal walk-off between the amplified wavepackets limits the achievable gain bandwidth.

In sharp contrast with lasers, the central frequency and the width of the OPA gain band can be manipulated by changing the orientation or temperature of the crystal, and/or by the pump-signal propagation geometry. These degrees of freedom can be used to produce tunable femtosecond pulses. Alternatively, degenerate OPA near the wavelength where the group-velocity dispersion for the signal and idler beams becomes zero $\omega_s = \omega_i = \omega_p / 2$ [168] or the noncollinear OPA [78, 79, 169-171] permits the amplification of few-cycle pulses [172, 173]. Both modes of operation can be simultaneously implemented in several OPA systems driven by the third or second harmonic or the fundamental of the 1030-nm picosecond pulses from Yb:YAG thin-disk amplifiers to yield synchronized tunable or few-cycle pulses in the visible (VIS), near-infrared (NIR) and mid-infrared (MIR) spectral range, respectively. These pulses may also be superimposed on each other for the synthesis of multi-octave light transients [174-176]. These options call for a seed coming in the form of a coherent, phase-stable, multi-octave supercontinuum covering the entire wavelength range of interest.

3.B. Generation of Waveform-Controlled Continua for OPA Seeding

The NIR continuum produced by the prototypical CEP-stabilized femtosecond KLM thin-disk-laser-based source described in Sec. 2.B [145], see Fig. 4, constitutes – after proper active synchronization to the pump pulses (see Sec. 2.C) – an ideal seed for broadband OPA. In fact, these CEP-stabilized continua exhibit a well-behaved spectral phase, excellent spatial beam quality and are delivered with microjoule-scale energy, allowing efficient OPA with low fluorescence background. The spectrum (green line) in Fig. 4(b) is perfectly matched to the gain band of BBO and LBO parametric amplifiers [137] pumped by the second harmonic of the Yb:YAG laser (515 nm).

Amplification in such an OPA to the millijoule energy level and recompression of the amplified NIR pulse may be followed by further spectral broadening in a gas-filled hollow-core fiber (HCF). Self-phase-modulation and self-steepening broadens the input spectrum predominantly towards shorter wavelengths. This approach can provide the broadband seed required by a VIS-OPCPA pumped by the third harmonic of the Yb:YAG laser (343 nm) but fails to do so for a MIR-OPCPA driven directly at 1030 nm. In the remaining part of this section we discuss the generation of a phase-stable continuum in the MIR and its subsequent extension to shorter wavelengths.

A powerful technique for the generation of CEP-stabilized MIR continua has been difference frequency generation (DFG) [177, 178]. This process creates a CEP-stable output from a non-CEP-stabilized femtosecond pulse and has been successfully applied to seeding few-cycle MIR-OPA systems [167, 179, 180]. The output of the sub-10-fs NIR source described in Sec. 2.B can – after preamplification in a single broadband OPA stage pumped at 1030 nm – efficiently drive DFG to yield a continuum in the 1.5-2.5 µm range [181]. The oscillator does not need to be CEP stabilized since the CEP of the fundamental cancels out in the DFG process.

The spectrum of the DFG output can be efficiently extended in a gas-filled HCF [182] to cover the multi-octave range of 400 – 2500 nm. The main building blocks of such a supercontinuum
generator are sketched in Fig. 9(a). The 10-fs-scale seed pulses may possibly be also derived directly from the output of the near-1-ps Yb:YAG pump source by cascaded temporal compression [183], as also indicated by a dashed line in Fig. 9(a). This approach would greatly relax the need for the active pump-seed synchronization system for the OPCPA described in Sec. 2.C because both the pump and the seed would travel comparable optical paths.

All essential processes underlying the above concept have already been successfully demonstrated. In fact, we have recently generated infrared continua (shown in Fig 9(b)) from few-cycle NIR pulses with an efficiency exceeding 10 % [181]. Moreover, the spectrum from a MIR-OPA seeded by a similar CEP-stable continuum could be efficiently broadened in a gas-filled HCF to cover the entire VIS-NIR-MIR spectral range of 400 – 2500 nm, which is also shown in Fig 9(b). The temporal characterization of the continuum by second-harmonic frequency-resolved optical gating (FROG) shows the high degree of coherence and compressibility of the generated multi-octave spectrum Fig. 9(b) [184]. This indicates such continua, at energy levels of hundreds of microjoules, is achievable with few-cycle MIR pulses, in agreement with theoretical predictions [182]. The seed signals for the simulated OPCPA systems discussed below are derived from the multi-octave continuum shown in Fig 9(b).

3.C. Prototypical OPCPA Architectures in 3FST

The common backbone for all prototypical 3FST architectures we propose and numerically analyze in the following sections consists of (i) a high-power femtosecond laser, in our case a 100-W-scale KLM Yb:YAG thin-disk oscillator, followed by (ii) the multi-octave seed generation described in the previous section and (iii) a multi-100-W-to-kW-scale source of multi-mJ, near-1-ps-pulses, in our case based on Yb:YAG thin-disk amplifiers, see Fig. 10(a). The supercontinuum seed (see Fig. 10) is split into three spectral channels: VIS centered at 550 nm, NIR centered at 1 μm, and MIR centered at 2 μm, by using chirped dicroic beam splitters [174, 185, 186].

Each of the three OPA channels can be used to generate tunable multi-cycle pulses which will be described in Sec. 3.D or to yield few-cycle pulses as will be shown in Sec. 3.E. Their pump pulses are generated by a simple frequency-converter module comprising two LBO crystals. Our crystal of choice is LBO instead of BBO, owing to its availability in large sizes and its small spatial and temporal walk-off, in spite of its smaller effective nonlinear coefficient. Second-harmonic generation (SHG) in the first one yields twin pulses of comparable energy at 515 nm and 1030 nm, which are mixed in the second crystal to produce a third pump pulse at 343 nm by sum-frequency generation (SFG). Moderate SHG and SFG conversion efficiencies (of about 50 % and 20-30 %, respectively) ensure that all beams exiting the frequency converter unit have a good beam quality, which is important for OPCPA pumping. The three beams are subsequently separated by dicroic beam splitters and directed into the three OPA channels described in the following sections.

3.D. The Power of 3FST: Tunability over Several Octaves

Time-resolved spectroscopy often requires tunable multi-cycle femtosecond pulses. The three OPCPA channels depicted in Fig. 10(a) can be designed to deliver wavelength-tunable femtosecond pulses. Their seed can be generated as described in the preceding section. We propose to produce the primary pump pulses at 1030 nm with the Yb:YAG thin-disk regenerative amplifier recently demonstrated, yielding 30-mJ, 1.6-ps pulses at 10-kHz repetition rate, i.e. an average power level of 300 W [148]. The frequency converter described in the previous section distributes this pump energy among the three OPCPA channels. The super-continuum is divided into three bands centered at carrier wavelengths of 550 nm, 1 μm, and 2 μm. They are seeded into the VIS, NIR and MIR arm of the OPCPA system, each of which consists of two amplifier stages, using thin BBO, LBO, and LiNbO₃ crystals, pumped at 343 nm, 515 nm, and 1030 nm, respectively. For more details, see Supplementary Material.

Pulse-duration control and wavelength tuning of the amplified pulses is accomplished by temporally stretching the seed continua and controlling their delay with respect to the pump pulses. In fact, the pump temporal window of $\tau_{\text{pump}} = 1$ ps slices out a fraction, ΔV_{signal}, of the bandwidth of the (stretched) seed continuum, ΔV_{seed}, which is inversely proportional to the duration τ_{seed} of the stretched seed: $\Delta V_{\text{signal}} = \Delta V_{\text{seed}} (\tau_{\text{pump}} / \tau_{\text{seed}})$, see Fig. 11(a).

Thanks to a near-linear chirp carried by the stretched seed, the carrier frequency of the amplified signal can be tuned by varying the delay of the seed with respect to the pump pulse and by setting the phase-matching angle of the amplifier crystal. Fig. 11(b) shows a series of amplified signal spectra from simulations in the three channels pumped with pulses of a duration of $\tau_{\text{pump}} = 1.7$ ps. The continua stretched to $\tau_{\text{seed}} = 30$ ps yield – after recompression – sub-40-fs pulses tunable over several octaves from the visible to the mid-infrared spectral range. Synchronized femtosecond pulses with adjustable pulse duration and tunable carrier frequency at such a variety of wavelengths and unprecedented average-power levels may open new prospects for sophisticated multi-dimensional spectroscopies and pump-control-probe schemes.

3.E. The Power of 3FST: Multi-Terawatt VIS, NIR, and MIR Few-Cycle Waveforms

Alternatively to delivering tunable multi-cycle pulses, the three OPCPA channels of our prototypical 3FST system can be designed to generate few-cycle pulses at a single carrier wavelength from each channel, by broadband amplification and subsequent recompression of the continua seeded into the amplifier chains. Typical application fields of few-cycle pulses are attosecond science and extreme nonlinear optics, benefiting from peak powers as high as possible. Few-cycle pulses with multi-terawatt peak powers are expected to allow scaling the flux and/or the photon energy at attosecond pulses by increasing the beam size in high-harmonic generation (HHG) from ionizing atoms [22] or exploiting relativistic interactions with high-density plasmas at the surfaces of solids [187-192]. Therefore, we perform the following model calculations for a prototypical multi-colour, multi-terawatt few-cycle 3FST system by assuming the availability of the most powerful 3FST driver currently under development: a near-1-ps, 200-mJ, 5-kHz Yb:YAG thin-disk regenerative amplifier [159].

In our numerical study, we distribute the pump energy among the three OPA chains in favor of the NIR and MIR channels. This strategy is motivated by numerous applications benefiting from longer wavelengths [193-195]. Frequency conversion to the low-order harmonics as described in Sec. 3.C yields approximately 40 mJ @ 343 nm, 74 mJ @ 515 nm, and 86 mJ @ 1030 nm for pumping the VIS, NIR, and MIR channel of the OPCPA system, respectively. The high intensity threshold for damage offered by the near-1-ps pump pulses allows a high single-pass gain in very thin (few-mm) OPA crystals, yielding a broad amplification bandwidth. The short length of the crystals is optimized for best gain saturation in each amplification stage. The energy is then
boosted by using several amplification stages without compromising the bandwidth.

For the MIR channel using four LiNbO₃ crystals, our simulations predict an amplified pulse energy of 19.2 mJ, carried at a center wavelength of 2 μm, with a bandwidth-limited pulse duration of 12.3 fs (FWHM), corresponding to sub-2-cycles of the carrier wave. The pump-to-signal energy conversion efficiency in this channel is 22 % limited by back conversion of the signal and idler into the pump via phase-matched SFG. In the NIR channel, 22.7-mJ pulses with bandwidth-limited pulse duration of 48 fs can be expected (see Fig. 12), corresponding to a conversion efficiency of 30 %.

Thanks to the non-collinear geometry, parasitic back-conversion is strongly reduced, giving rise to an excellent efficiency. Last but not least, the VIS channel may yield 7.1-mJ pulses with a bandwidth-limited duration of 5.1 fs (Fig. 12). For details of the simulations, see Supplementary Material.

In order to verify the credibility of this design study, we constructed a 3-stage OPCPA test, seeded by a continuum derived from a Ti:Sapphire front end (Femtopower Compact Pro TiSapphire multipass amplifier, Femtolasers GmbH) and pumped by an optically synchronized Yb:YAG thin-disk regenerative amplifier [137]. The 3-μJ seed pulse covering the spectral range of 500-1400 nm was generated in two stages of spectral broadening in a 120-μm-inner-diameter, 15-cm-long hollow-core fiber filled with Kr atoms at a pressure of 5 bar and subsequently in a 2-mm thick plate of YAG crystal using 30 μJ of the 1-μJ, 25-fs output pulses of the Tisapphire amplifier. The three subsequent stages of OPCPA used 2 mm LBO, 2 mm BBO and 4 mm LBO as the nonlinear crystal, amplifying the spectral ranges of 800-1350 nm, 670-1000 nm, and 800-1350 nm, respectively. One millijoule of a total energy of approximately 8 mJ of the 1.7-ps, 515-nm pump pulse drove the first stage, with the remaining energy and its fraction transmitted by the second stage pumping the second and third stage, respectively.

Fig. 12(c) shows the spectrum of the amplified pulses supporting a transform-limited pulse duration of 4.3 fs (FWHM). The preliminary compression of the amplified spectrum to sub-10-fs pulses, utilizing a (not-yet-optimized) set of chirped mirrors reveals a well-behaved spectral phase of the amplified signal, indicating its compressibility to the Fourier limit. The energy of the amplified pulses was 1.8 mJ, with negligible ASE content. The amplified bandwidth supporting sub-5-fs pulses and the conversion efficiency in excess of 20 % achieved already in preliminary experiments creates confidence in the predictions of our modelling.

3.F. The Power of 3FST: Synthesis of Multi-Octave, Multi-Terawatt Light Transients

Waveform-controlled light transients with a bandwidth approaching two octaves have been demonstrated at microjoule energy and gigawatt peak-power levels [174, 185, 196, 197]. They allow temporal confinement of optical radiation to less than 1 femtosecond in sub-cycle waveforms [198, 199]. With their power substantially enhanced, these extreme waveforms may open a new chapter in nonlinear optics and attosecond science (thanks, among others, to the feasibility of suppressing ionization up to unprecedented peak intensities and instantaneous ionization rates approaching optical frequencies, respectively). The prototypical three-colour few-cycle OPCPA system described in the previous section offers a conceptually simple route to scaling multi-octave optical waveform synthesis to the multi-terawatt regime.

To this end, the three channels delivering few-cycle pulses in the VIS, NIR, and MIR spectral ranges, are recombinet using a set of dichroic chirped mirrors to yield one beam in a scheme similar to that reported in [176, 185]. Due to the difficulties of dispersion management and the high demands on a chirped-mirror compressor and the required coating for the OPCPA crystals in serial pulse synthesis [196], a parallel-synthesis [200] approach is chosen. Furthermore, fluctuations and drifts in the relative timing of the recombinet pulses need to be suppressed to a tiny fraction of the half field cycle for a stable waveform resulting from the coherent superposition [201]. This optical timing synchronisation can be accomplished with the required sub-100-as precision with a balanced optical cross-correlator demonstrated recently [176, 197]. The feasibility of super-octave optical waveform synthesis was recently demonstrated in the NIR-VIS-UV spectral range by seeding a three-channel [185] and, more recently, four-channel [198] synthesizer consisting of broadband chirped mirrors with a continuum originating from a Ti:sapphire-laser-driven hollow-fiber/chirped-mirror compressor. Implementation with an OPA system is also being prepared [200, 202, 203].

Merely the adjustment of the relative timing of the three pulses emerging from the three OPA channels can result in a great variety of electric field forms on the time scale of the optical cycle. In fact, Fig. 13(a)-(d) depict a few representative waveforms that may be synthesized from bandwidth-limited pulses emerging from the three channels described in the preceding section by varying their relative timing upon recombinetion. Further degrees of freedom for waveform sculpting can be introduced by shaping the amplitude and phase of the spectra of the individual channels, e.g., via an acousto-optic pulse shaper [204] and/or a spatial-light modulator [205].

4. Conclusions and Outlook

Femtosecond technology emerged from nonlinear optical techniques allowing both the production and the characterization of femtosecond laser pulses. Its first generation (1FST) relied on dye lasers and delivered femtosecond pulses with peak and average powers up to the 100-MW and 100-nW range, respectively, over a narrow spectral range largely confined to 600-900 nm. Broadband solid-state laser media with high saturation fluence and CPA heralded the second generation of femtosecond technology (2FST), allowing for a boost of the peak and average powers of sub-100-fs pulses to the multi-TW or 10-W regime, respectively, but not both of them simultaneously. Powerful 2FST systems are able to produce femtosecond pulses over an extended range of frequencies from the far infrared to the extreme ultraviolet via coherent frequency conversion based on $\chi^{(2)}$ and $\chi^{(3)}$ nonlinearities. However, these secondary sources are limited to power levels that are several orders of magnitude lower. The range of carrier wavelengths of powerful primary 2FST sources is – similarly to 1FST – rather limited, currently spanning about 0.7 – 1.1 μm.

Based on OPCPA driven by terawatt-scale pulses from ytterbium lasers at kW-scale average power (so far demonstrated with water-cooled thin-disk and slab, and cryogenically-cooled thick-disk technologies), third-generation technology (3FST) allows boosting the peak and average power of coherent femtosecond light simultaneously to the multi-TW and multi-100-W range, respectively. It is capable of doing so over a wavelength range extended to more than two octaves, spanning 0.45 – 2.5 μm with either
(i) tunable, synchronized, multi-cycle, VIS, NIR, MIR several-10-fs-duration pulses or
(ii) synchronized, few-cycle VIS, NIR, MIR few-fs-duration pulses or
(iii) sub-cycle-to-few-cycle light transients synthesized from all spectral components available within the above multi-octave region, in all cases with full control over the generated light waves. These operation modes are being offered by a single basic system architecture and basic instrumentation, providing an unprecedented versatility and variety of methodologies for ultrafast spectroscopy and nonlinear optics.

Driven by the primary 3FST sources outlined in Sec. 3, secondary sources of femtosecond light are likely to outperform their predecessors based on 2FST in several respects. Not only are 3FST-based secondary sources likely to exceed the power of their 2FST-based predecessors by orders of magnitude but they may also dramatically extend their spectral coverage. As an example, we have scrutinized the capability of multi-TW, multi-octave light transients to extend the photon energy frontier of attosecond pulses to several kiloelectronvolt, to the boundary of the regime of hard X-rays. With the pre-optimized waveform presented in Fig. 13(d), our numerical simulations of high-order harmonic generation (HHG), based on the strong field approximation (SFA) [206] in helium (see caption of Fig. 13(e) for details), show that synthesized multi-octave transients are superior to few-cycle pulses in pushing the frontiers of high-order harmonic generation into the regime of hard X-rays. As a matter of fact, our pre-optimized sub-cycle transients substantially increase the photon energy of the cut-off harmonics as compared to those generated by a 5-fs Gaussian pulse of identical peak power. Our preliminary study indicates that 3FST will be beneficial for extending the frontiers of attosecond science into X-ray regime.

1FST provided real-time access to a wealth of microscopic phenomena for the first time and created the technological basis for the birth of femtochemistry, allowing direct insight into the making and breaking of chemical bonds. 2FST has also created entirely new research fields and technologies, such as laser-driven accelerators and attosecond science. 3FST holds promise for consequences of comparable impact. One of them may be the recording of movies of any microscopic motion outside the atomic core via attosecond X-ray diffraction.

Acknowledgment

This work has been supported by the Munich Center for Advanced Photonics (MAP) as a part of the DFG Excellence Initiative. The financial support of the German Federal Ministry of Education and Research (BMBF) through contract 13N12082 "NEXUS" is acknowledged (HF and OP). The authors further acknowledge both direct and indirect contributions from a number of colleagues at MPQ and LMU. Most importantly, the pioneering work of Stefan Karsch, László Veisz and coworkers in the field of high-power OPCPA has led to relevant progress and insight on which the current work draws. We thank Christian Hackenberger for preparing the graphical illustrations for this paper.
Fig. 2. Basic conceptual architecture of a 3FST system. A sub-ps ytterbium laser oscillator seeds the pump source. The broadband seed can either be generated from the output of the picosecond pump laser (solid arrows) or directly from the oscillator (dashed arrows). In the latter case an active temporal synchronization is needed between the pump and seed pulses of the OPCPA chain. The 3FST source can be operated to generate (i) widely tunable pulses of few-tens of femtoseconds duration, (ii) few-cycle pulses in different spectral ranges, or (iii) multi-octave controlled waveforms with sub-optical-cycle structure. The building blocks of the 3FST system are discussed in detail in the respective sections as indicated in the figure.

Fig. 3. Schematics of thin-disk laser technology. (a) Cold finger with substrate showing the cooling mechanism in a disk-laser head. (b) Disk laser head showing the principle of the pump-light-reimaging technique onto the thin-disk active medium (courtesy of TRUMPF GmbH).
Fig. 4. Performance of a KLM Yb:YAG thin-disk oscillator. The oscillator delivers pulses with 1.1 µJ of energy and 250 fs duration at a repetition rate of 38 MHz. (a) Temporal intensity profile (red) and temporal phase (dashed black) of the pulse obtained from a FROG measurement after a two-stage compression, yielding 0.27-µJ, 10-fs pulses. (b) Corresponding spectral intensity distribution (red line) along with a spectrum obtained for enhanced self-phase modulation (green line) in the bulk medium.

Fig. 5. Thin-disk regenerative amplifier. (a) Typical schematic layout. The sub-ps seed pulse is temporally stretched before entering the thin-disk Yb:YAG regenerative amplifier. The amplified pulses are recompressed in a grating compressor. (b) Measured spectrum (green dashed line) and temporal intensity profile (blue line) from a system equipped with two disk modules (disk parameters: doping concentration > 7%, thickness ~100 µm, beveled and roughened edge, TRUMPF laser GmbH). These 0.97-ps pulses carry an energy of 40 mJ at a repetition rate of 5 kHz, corresponding to an average power of 200 W. The corresponding measured (top) and reconstructed (bottom) FROG traces are shown as insets (G error: 0.0024).

Fig. 6. Active pump-seed temporal synchronization system. (a) Schematic layout. (b) Timing fluctuations on the order of +/- 100 fs are reduced to a residual RMS jitter of less than 1.9 fs (for details, see [155]).
Fig. 8. Performance of continuous-wave diode-pumped regenerative amplifiers utilizing commercial thin-disk modules (disk parameters: doping concentration > 9%, thickness ~120 µm, beveled and roughened edge, TRUMPF laser GmbH). In a linear cavity setup, 95 mJ output energy was demonstrated at 1 kHz repetition rate with one standard disk pumped at 940 nm (blue dots). While there were indications of energy saturation, the energy was boosted to 130 mJ by adding a second disk (green dots). By further optimization of both disk parameters and pump design, more than 200 mJ energy at 5 kHz can be achieved (yellow line).

Fig. 9. Multi-octave seed-generation. (a) Near-three-octave seed-generation schemes based on the output from the oscillator described in Sec. 2.B and Fig. 4 (solid arrow) or driven by the amplified sub-ps pulse characterized in Fig. 5(b) (dashed arrow). The spectrally broadened and compressed output of the Yb:YAG oscillator is amplified in an OPA stage to 50 µJ of energy and subsequently compressed in a chirped-mirror compressor (CM) to about 6 fs in order to provide sufficient intensity for efficient difference-frequency-generation (DFG). The resultant broadband DFG signal, centered at about 2 µm is compressed and focused into a gas-filled hollow-core...
fiber to extend the spectrum into the visible range. This approach provides a near-three-octave, phase-stable continuum at the energy level of the order of 1 µJ. Alternatively, spectrally-broadened sub-ps mJ-scale pulses directly from the amplifier circumvents the need for an additional OPA stage and may result in a phase-stable supercontinuum at the level of several hundred µJ. (b) Broadband phase-stable continua generated in preliminary experiments. Red line: Difference-frequency radiation in a 500-µm-thick type-I BBO crystal optimized for 12% conversion efficiency. Blue shaded area: Spectral broadening of a parametrically amplified three-cycle DFG signal in a gas-filled hollow-core fiber to a super-continuum containing 330 µJ of energy. The detected bandwidth of the spectrum in both cases is limited by the sensitivity of the spectrometer in the infrared tail. The green curve shows the measured spectral phase of the generated super-continuum using the FROG technique.

Fig. 10. Prototypical multi-octave 3FST field synthesizer (Sec. 3.E and Sec. 3.F). (a) Schematic architecture of a three-channel OPCPA system seeded and pumped by sub-ps ytterbium lasers. A part of its output is used for generating the multi-octave super-continuum signal, which is split into three channels, centered at 550 nm, 1 µm, and 2 µm, respectively. The different channels are pumped by different (low-order) harmonics of the multi mJ-level, kHz, Yb:YAG regenerative amplifier output. Each channel supports few-cycle pulses after compression. Alternatively, using a similar concept, several-10-fs multi-cycle pulses widely tunable from the UV to the IR spectral range can be produced. (b) By coherently combining the three few-cycle channels amplified in (a), non-sinusoidal, multi-octave light transients can be generated.
Fig. 11. Generation of widely tunable femtosecond pulses (Sec. 3.D). (a) Scheme for generating spectrally and temporally tunable pulses at any wavelength. The seed pulses are stretched to a significantly longer duration than that of the pump pulse. Amplification in a simple OPCPA setup yields pulses that can spectrally be tuned by changing the temporal delay between pump and seed pulses. (b) Amplified spectra of a widely tunable 2-stage-OPCPA system obtained from simulations. mJ-level, sub-30-fs pulses, tunable from 445 nm to 2750 nm can be generated by using different harmonics of a 10 kHz, Yb:YAG regenerative amplifier (see. Supplementary Material).

Fig. 12. Multi-octave amplified spectra of the three-channel synthesizer and corresponding waveforms (Sec. 3.E). (a) Spectra of the three-channel OPCPA synthesizer obtained from simulations. The spectra of the different stages in the different channels are normalized to their energy and shown on a logarithmic scale: VIS – blue, NIR – red-orange, IR – brown. For details of the simulations see Supplementary Material. (b) Fourier-transform-limited electric field associated with the output spectrum of each channel in (a). (c) amplified spectrum in a three-stage OPCPA chain. The spectrum contains 1.8 mJ and supports sub-5 fs pulses at 3 kHz repetition rate.
Peak powers have been calculated assuming a Gaussian pulse shape \(P_{\text{peak}} = 0.94 \times E_{\text{pulse}} / \tau_{\text{pulse}} \).

<table>
<thead>
<tr>
<th>(P_{\text{peak}}) (MW)</th>
<th>(P_{\text{avg}}) (W)</th>
<th>(E_{\text{pulse}} / \tau_{\text{pulse}}) (µJ/ps)</th>
<th>(f_{\text{rep}}) (kHz)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber laser systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 MW</td>
<td>830 W</td>
<td>1.06 µJ / 640 fs</td>
<td>78 MHz</td>
<td>[101]</td>
</tr>
<tr>
<td>0.75 GW</td>
<td>93 W</td>
<td>0.93 µJ / 81 fs</td>
<td>1 MHz</td>
<td>[103]</td>
</tr>
<tr>
<td>1.8 GW</td>
<td>530 W</td>
<td>1.3 µJ / 670 fs</td>
<td>400 kHz</td>
<td>[107]</td>
</tr>
<tr>
<td>Slab laser systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 MW*</td>
<td>140 W</td>
<td>43 µJ / 1.1 ps</td>
<td>3.25 MHz</td>
<td>[109]</td>
</tr>
<tr>
<td>80 MW</td>
<td>1.1 kW</td>
<td>55 µJ / 615 fs</td>
<td>20 MHz</td>
<td>[100]</td>
</tr>
<tr>
<td>23 GW*</td>
<td>250 W</td>
<td>20 µJ / 830 fs</td>
<td>12.5 kHz</td>
<td>[111]</td>
</tr>
<tr>
<td>Cryogenically cooled laser systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65 MW*</td>
<td>430 W</td>
<td>8.6 µJ / 12.4 ps</td>
<td>50 MHz</td>
<td>[105]</td>
</tr>
<tr>
<td>8.7 MW*</td>
<td>93 W</td>
<td>93 µJ / 10 ps</td>
<td>1 MHz</td>
<td>[106]</td>
</tr>
<tr>
<td>73 MW</td>
<td>19.4 W</td>
<td>1 mJ / 11.7 ps</td>
<td>20 kHz</td>
<td>[99]</td>
</tr>
<tr>
<td>7 GW*</td>
<td>60 W</td>
<td>12 mJ / 16 ps</td>
<td>5 kHz</td>
<td>[104]</td>
</tr>
<tr>
<td>2 GW*</td>
<td>64 W</td>
<td>32 mJ / 15 ps</td>
<td>2 kHz</td>
<td>[102]</td>
</tr>
<tr>
<td>170 GW*</td>
<td>100 W</td>
<td>1 mJ / 5.1 ps</td>
<td>100 kHz</td>
<td>[110]</td>
</tr>
<tr>
<td>Thin-disk laser systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 GW*</td>
<td>200 W</td>
<td>2 mJ / 13 ps</td>
<td>100 kHz</td>
<td>[207]</td>
</tr>
<tr>
<td>17.6 GW*</td>
<td>300 W</td>
<td>30 mJ / 16 ps</td>
<td>10 kHz</td>
<td>[148]</td>
</tr>
<tr>
<td>38.8 GW*</td>
<td>200 W</td>
<td>40 mJ / 0.97 ps</td>
<td>5 kHz</td>
<td>Fig. 5(b)</td>
</tr>
<tr>
<td>27.6 GW*</td>
<td>100 W</td>
<td>50 mJ / 17 ps</td>
<td>2 kHz</td>
<td>[135]</td>
</tr>
<tr>
<td>-</td>
<td>200 mJ</td>
<td>5 kHz</td>
<td>under development</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2 J</td>
<td>10 kHz</td>
<td>envisioned</td>
<td></td>
</tr>
</tbody>
</table>

See Supplement 1 for supporting content.

References

16. (!!! INVALID CITATION !!!).

113. S. Breitkopf, “A path to terawatt peak-power fibre laser systems,” (Submitted for publication).

155. S. Prinz, "Sub-2-fs active pump-seed synchronization for OPCPA," (to be submitted).

158. http://www.mbi-berlin.de/de/research/projects/1.2/topics/1_power_disk_laser/.

166. "Note 2," Alternatively, momentum conservation can also be fulfilled by periodic modulation of some optical property of the nonlinear crystal (quasi-phase-matching) instead of exploiting birefringence. Periodically-poled crystals are being widely used for this purpose.

172. "Note 3," Optical parametric amplification done in the frequency domain holds promise for relaxing restrictions arising from phase mismatch in OPA.

