Intriguing Hysteresis Dynamics in Ultrafast Photo-Induced Magnetization

Je-Ho Shim, Chul-Hoon Kim, Hong-Guang Piao, Sang-Hyuk Lee, Kyung Min Lee, Jong-Ryul Jeong, Seung-Young Park, Yeon Suk Choi, Dong Eon Kim, and Dong-Hyun Kim*

Time-resolved magneto-optical Kerr effect measurement is carried out to determine ultrafast hysteresis behavior during a photo-induced demagnetization/remagnetization process for Co/Pt ferromagnetic multilayers. Due to the stroboscopic measurement scheme, hysteresis curve measured by a pump–probe technique exhibits an irreversible behavior, repeatedly reset to a metastable hysteresis state at each stroboscopic measurement, observed as the reduction of the coercivity. It is demonstrated that the stroboscopically measured hysteresis and the coercivity could be a stable parameter in describing the ultrafast photo-induced spin dynamics for both reversible and irreversible behaviors. Moreover, it is found that an unusual coercivity behavior exists together with a nontrivial magnetization change under external fields comparable to the coercivity of the sample.

1. Introduction

Understanding of ultrafast spin dynamics is essential for the development of спинtronic devices in operation with ultrahigh speed as well as ultrahigh density.[1–3] Recently, photo-induced spin dynamics has been extensively investigated since Beaurepaire et al. first reported an ultrafast demagnetization by femtosecond laser pulse in ferromagnetic Ni film by means of time-resolved magneto-optical Kerr effect (TR-MOKE) measurement.[4] Several mechanisms,[5] such as electron–magnon interaction,[6] Coulomb interaction,[7] electron–phonon scattering,[8] effect of magnetic domain,[9] direct angular momentum transfer,[10] hot-electron-induced demagnetization,[11] and superdiffusive spin current,[12] have been proposed to explain the ultrafast demagnetization phenomenon. The exact underlying physics of the ultrafast spin dynamics is still under intense debate.

Generally, magnetic hysteresis curves are considered to be the most important macroscopic feature in understanding ferromagnetic behavior of samples. For instance, coercivity, saturation field, remanence, and saturation magnetization provide basic characteristic parameters in analyzing overall ferromagnetic features. However, it has been known that magnetic hysteresis, measured during the photo-induced demagnetization/remagnetization process, is quite different from static hysteresis curves with much reduced coercivity.[13–15] The coercivity reduction is explained based on metastable states during the photo-induced demagnetization/remagnetization dynamics, leading to a so-called irreversible process, arising from the magnetization state change in metastable states.[14,15] To avoid the irreversible process issue...
in pump-probe stroboscopy measurement for ultrafast spin dynamics, external magnetic field cycling in synchronization with the same frequency as the stroboscopic repetition frequency was adopted in TR-MOKE setup. With this synchronization, coercivity reduction becomes negligible, as the metastable states at time-zero are replaced by the fully synchronized magnetic saturation.

On the other hand, interestingly, Shufa et al. have recently reported that coercivity measured by the pump-probe stroboscopy can be also reversible, where the field-dependent Kerr signals are observed to be reversible near coercivity. Thus, hysteresis behavior such as coercivity reduction in ultrafast spin dynamics still remains a scientific interest to further explore. Unfortunately, little has been known for detailed spin dynamics near the coercivity during the ultrafast photo-induced spin dynamics. Thus, rather simple magnetic system is required where we can focus on the ultrafast photo-induced demagnetization behavior. Recently, ultrafast spin dynamics in multilayers with perpendicular magnetic anisotropy (PMA) has been explored, where the magnetization precession signal can be suppressed under an external field normal to film plane so that only demagnetization and remagnetization is pronounced without extra precession signal. Herein, we have measured time-resolved metastable hysteresis curves during the photo-induced demagnetization/remagnetization process by means of pump-probe stroboscopic TR-MOKE measurement for

![Figure 1](https://www.advancedsciencenews.com/)

Figure 1. Static hysteresis curve (black) and stroboscopically measured hysteresis curve (red) at delay time $t = -2$ ps for $n = 5$ and 10 case.

![Figure 2](https://www.pss-b.com/)

Figure 2. Stroboscopically measured hysteresis curve: a) 3D map for different delay times in case of $[\text{Co/Pt}]_5$ and b) snapshot at $t = 300$ fs. c) 3D map for different delay times in case of $[\text{Co/Pt}]_{10}$ and d) snapshot at $t = 300$ fs.
ferromagnetic Co/Pt multilayer films, where both reversible and irreversible behaviors are observed for Co/Pt multilayers with different repeat numbers. Unusual TR-MOKE signal under external fields comparable to the coercivity is observed even for the case of reversible process.

2. Results and Discussion

Static hysteresis curves (black) were determined by static MOKE measurement, as seen in Figure 1. The coercivity (H_c) in case of $n = 5$ is larger than that in case of $n = 10$, implying a larger PMA, which is also confirmed by the anisotropy constant measurement. For $n = 5$ and 10, the magnetic anisotropy constants are 6.34×10^6 and 2.76×10^6 erg cm$^{-3}$, respectively. Hysteresis curves (red) measured by stroboscopic pump-probe technique were also plotted together. The stroboscopic measurement was done at the delay time of -2 ps. It is clearly observed that, even at the delay time before the time-zero, the hysteresis curves measured by static and stroboscopic ways become quite different, indicating the existence of the irreversible process effect from metastable magnetic states in the stroboscopic measurement. In case of $n = 5$, the reduction of H_c from the stroboscopic measurement is vividly observed, while H_c is quite similar to each other in case of $n = 10$. The slight change in the loop shape for the case of $n = 10$, particularly in the nucleation region, might imply the existence of the irreversible process around this region.

Hysteresis curves measured by TR-MOKE at various delay times (t) are plotted for the cases of $n = 5$ and 10 in Figure 2, where an external magnetic field (H) was swept from -1.7 to 1.7 kOe at each delay time. Examples of the hysteresis curve snapshot at $t = 300$ fs are also plotted. Compared to the case shown in Figure 1 ($t = -2$ ps), H_c even decreases further for both cases. For instance, in case of $n = 10$, H_c decreased from 410 ($t = -2$ ps) to 278 Oe ($t = 300$ fs).

We have analyzed TR-MOKE signal following the increasing branch (red) of the hysteresis curve of Figure 2b,d. In Figure 3a, the TR-MOKE signal for $n = 5$ is plotted for various external fields from -1.0 to $+1.0$ kOe. It is observed that the TR-MOKE signal is quite symmetric under the inversion of the external field direction. TR-MOKE signal normalized by the peak value is plotted in Figure 3b, where most of the curves collapse either upper (bluish) or lower one (reddish). The black line in Figure 3a,b,d,e is Kerr signal at zero field. The intermediate TR-MOKE signal in green represents a case of external fields near H_c. It is considered that the TR-MOKE behavior is not significantly changing with respect to the external field, having a similar photo-induced demagnetization/remagnetization behavior for all fields. In Figure 3c, coercivity values determined

![Figure 3](image.png)

Figure 3. In case of [Co/Pt]$_5$ multilayer: a) TR-MOKE signal for various fields from -1.0 to $+1.0$ kOe, b) normalized TR-MOKE signal, and c) H_c^{pump}, coercivity determined from the pump-beam modulation in stroboscopically measured hysteresis curve at 5 ps. In case of [Co/Pt]$_{10}$ multilayer: d) TR-MOKE signal for various fields from -1.0 to $+1.0$ kOe, e) normalized TR-MOKE signal. The case of 0.24 kOe field value is denoted. f) H_c^{pump}, coercivity determined from the pump-beam modulation in stroboscopically measured hysteresis curve at 5 ps. The horizontal dotted line represents the case of 0.24 kOe. The vertical dotted lines indicate the region of interest.
from stroboscopic hysteresis curve are plotted with respect to the delay time. It should be noted that the coercivity from the stroboscopic pump-probe technique with pump-beam modulation (H_{pump}^C) denotes the pump-induced magnetization change. As seen in Figure 3c, H_{pump}^C seems to be almost the same within the error in case of $n = 5$.

TR-MOKE signal for $n = 10$ is plotted in Figure 3d. Overall, the trend looks similar to the case of $n = 5$. However, there is a clear difference in the details, for instance, under negative fields, where the TR-MOKE signal with remagnetization after the maximal demagnetization crosses zero-line from the lower (reddish) to upper region (bluish) for several intermediate external values, which is better seen if the signal is normalized as shown in Figure 3e. In case of 0.24 kOe external field, the TR-MOKE signal first increases sharply, then decreases, and again increases, crossing from the lower to the upper region (Figure 3e). Considering that the TR-MOKE signal by pump-beam modulation is proportional to the photo-induced change (ΔM) of magnetization, the observed behavior at the external field of 0.24 kOe implies that the magnetization, initially at the negative region (reddish), experiences ultrafast demagnetization, followed by fast remagnetization reaching negative dip within 0.5 ps. Then this unusual remagnetization decreases, crossing the zero-line and moving upward, implying demagnetization on a time scale much longer than 5 ps. The corresponding H_{pump}^C behavior with time is plotted in Figure 3f, where a similar nontrivial behavior is clearly observed. The unusual behavior is observed only when the positive (negative) external field is comparable to the coercivity while the net negative (positive) magnetization is excited by the pump beam pulse. Thus, it is considered that the unusual behavior arises from the complex magnetic configuration potentially with multiple magnetic domain structures. For further investigation, magnetic domain structures and their time-resolved behavior should be studied, which is beyond the scope of the present study. We urge an experimental exploration of the ultrafast domain observation during the photo-induced demagnetization/remagnetization process for a specific external field condition around the coercivity of the sample.

We have carried out TR-MOKE measurement for a longer time scale up to 700 ps time delay, as shown in Figure 4. In a similar way to the case of Figure 3, TR-MOKE signal under several magnetic fields, normalized TR-MOKE signal, and H_{pump}^C are plotted on a longer time scale. Overall, the field-dependent TR-MOKE behavior as well as the normalized one exhibits similar behavior on the longer time scale. It should be remembered that the Co/Pt multilayer in the present study has PMA, and thus, the TR-MOKE signal is free from the spin precession, as the field is applied normal to the film plane and the probe also detects polar-MOKE signal. As seen in Figure 4, spin precession does not significantly affect the observed TR-MOKE behavior, as expected. In case of $n = 5$, H_{pump}^C (Figure 4c) exhibits almost

Figure 4. [Co/Pt]$_5$ multilayer: a) TR-MOKE signal for various fields from -1.0 to $+1.0$ kOe, b) normalized TR-MOKE signal, and c) H_{pump}^C, coercivity determined from the pump-beam modulation in stroboscopically measured hysteresis curve at 700 ps. [Co/Pt]$_{10}$ multilayer: d) TR-MOKE signal for various fields from -1.0 to $+1.0$ kOe, e) normalized TR-MOKE signal. The case of 0.24 kOe field value is denoted. f) H_{pump}^C, coercivity determined from the pump-beam modulation in stroboscopically measured hysteresis curve on a longer time scale (\approx700 ps).
the same trend, compared to the case of the shorter time scale (Figure 3c). In case of $n = 10$, the H_c^{pump} keeps increasing after 100 ps, which might be ascribed to the characteristics of the irreversible behavior.

We have further quantitatively analyzed hysteresis parameters as shown in Figure 5a, where the determination of the saturation magnetization (ΔM_S), remanence (ΔM_R), coercivity (H_c^{pump}), and hysteresis area (ΔA_{pump}) from the TR-hysteresis is exemplified. In Figure 5b, H_c^{pump} versus delay time is plotted for $n = 5$ and 10 cases for a longer time scale up to 700 ps (open dot). For $n = 5$, H_c^{pump} exhibits a rather simple behavior, mostly remaining below 0.1 kOe, as expected from the case of Figure 3c. However, it is interesting to note that H_c^{pump} in case of $n = 10$ never remains constant over 700 ps. In the earlier phase, H_c^{pump} is observed to be greater than 0.25 kOe, then abruptly decreases reaching the minimum at $t \approx 50$ ps. For $t > 50$ ps, H_c^{pump} monotonically increases up to 700 ps. Considering that the H_c^{pump} behavior is closely involved with the unusual ΔM behavior, as seen in Figure 3e,f, it is expected that the unusual ΔM behavior lasts over several hundreds of ps. It should be remembered that the coercivity behavior could be rather complex, particularly in ultrafast photo-induced demagnetization/remagnetization dynamics, as there might be multiple domain configurations involved with ultrafast dynamics. However, our experimental finding implies that, even around the coercivity region with possibly complex domain configuration, H_c^{pump} could still be a stable parameter, characterizing the unusual dynamical behavior. In case of $n = 5$, where an irreversible process is quite obvious, H_c^{pump} remains almost the same. In case of $n = 10$, H_c^{pump} exhibits a quite unusual behavior consistent with the nontrivial ΔM behavior determined from the TR-MOKE signal, which suggests that H_c^{pump} could also be the stable description parameter for the photo-induced demagnetization/remagnetization dynamics regardless of reversible/irreversible categorization. Lastly, we have compared H_c^{pump} and $\Delta A_{\text{pump}}/\Delta M_S$, where it is interesting to note that almost the exact matching exists for the two in both $n = 5$ and 10 cases. This is expected from the conventional static hysteresis loop analysis. For instance, for the square loop, the coercivity is determined by (hysteresis area)/(saturation magnetization). It is clearly observed that the matching in the static case also exists even in the case of ultrafast TR-hysteresis behavior.

3. Conclusions

We have investigated magnetic hysteresis curves measured using pump-probe stroboscopy adopting TR-MOKE on an ultrafast time scale. We have observed unusual hysteresis behavior together with the nontrivial H_c^{pump} variation. For Co/Pt multilayer film with PMA, irreversible and reversible trends in hysteresis curves are found for different multilayer repeat numbers. In both irreversible and reversible cases, H_c^{pump} is closely related to the overall spin dynamics during the photo-induced ultrafast demagnetization/remagnetization process.

4. Experimental Section

TR-MOKE with variation in external fields as well as stroboscopic delay times was measured. A CEP (carrier envelope phase)-stabilized multipass amplifier laser (Femtopower, Femtolaser Inc.) was used as the light source for TR-MOKE. The pump and probe beam with 780 nm wavelength, 3 kHz repetition rate, and 25 fs pulse width was used. Both the pump and probe beams were set to have s-polarization. The effective time resolution was better than 200 fs, determined from the auto-correlation measurement. The details of the TR-MOKE set up are described elsewhere. Magnetic hysteresis were measured at each delay time up to 700 ps. The pump laser fluence was kept to be 13.2 mJ cm$^{-2}$ in all cases. (6.2 Å Co/7.7 Å Pt) multilayer films with repeat number $n = 5$ and 10 were prepared by sputtering on a Si substrate with a 22 Å Pt protection layer. The multilayer structure of Co/Pt multilayers was confirmed by a low-angle X-ray diffraction and the extended X-ray absorption fine structure analysis. Both films exhibited a PMA.

Acknowledgements

This research was supported in part by Global Research Laboratory Program (Grant No. 2009-00439) and by Max Planck POSTECH/KOREA Research Initiative Program (Grant No. 2016K1A4A401922028) through the National Research Foundation of Korea (NRF) funded by Ministry of Science, ICT & Future Planning. This study was supported by Korea Research Foundation (NRF) (Grant No. 2018R1A2B3009569) and a Korea Basic Science Institute (KBSI) Grant D39614. This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008763, The Competency Development Program for Industry Specialist).
Conflict of Interest

The authors declare no conflict of interest.

Keywords

spin dynamics, time-resolved magneto-optical Kerr effect, photoinduced magnetization, magnetic hysteresis

Received: May 31, 2019
Revised: August 25, 2019
Published online: September 20, 2019